高压电动机的节能工作 电动机短路如何修复
时间:2017-06-26 09:03 来源:未知 作者:admin 点击:次
高压电动机在水泥生产线上装机容量较大,且属于电感性负载,无功功率损耗很大,在高压电动机和电力变压器装机容量之比中,电动机的无功损耗占所有无功损耗的70%左右,因此高压电动机的节能工作也必须视为大型水泥生产线重点管理工作之一。 1)从高压电动机本身来说应选用功率因数高和机械效率高的产品,现在市场也出现了新型高效节能电动机,但是在低压电动机上应用的较多。高压电动机的铭牌中一般都标明功率因数为85%左右,功率因数低会造成很多问题,比如转差率增大、电动机过热等。电动机效率问题是不容忽视的,在计算电动机功率时必须将效率计算进去才能真实的反映电动机本身的输出功率。 2)传统提高功率因数减少无功损耗的方法是安装电力补偿电容器,其投资少,见效快,维护简便。供电部门在对用户的用电考核中,专门考核用户的电网功率因数,对超过90%的用户给予奖励。电力电容器的安装,一种是集中式补偿,所有的电容器安装在专门设计的电容器室内,对配电室母排和线路进行补偿,便于管理、维护,但是对高压电动机本身无法补偿;第二种办法是机旁就地安装,直接与高压电动机联接进行补偿,或者安装在电动机开关柜内。采用哪种方法需视具体情况而定。 高压电动机的节能工作迫在眉睫,选择可靠有效的节能设备不但能为企业节省巨大的经济开支,还能达到事半功倍的效果。北京中科宇杰节电设备有限公司自主研发、生产的高压电机智能节电系统以高压变频调速为基础,配套先进、精确的现代控制系统,可使高压电机在最优经济当量运行,降低能源损耗,提高电机效率。 电动机短路如何修复 如果短路的圈数不多,把那几圈烧坏的线断开,不让它们形成短路环,再把这组线圈接上,就那么继续用,少几圈没什么问题.实际上维修时,由于大意,将某组线圈多绕或少绕几圈也是常有的事.如果烧的圈数太多,就只能换新绕组了。 电机绕组短路检测: ⑴外部观察法。观察接线盒、绕组端部有无烧焦,绕组过热后留下深褐色,并有臭味。 ⑵探温检查法。空载运行20分钟(发现异常时应马上停止),用手背摸绕组各部分是否超过正常温度。 ⑶通电实验法。用电流表测量,若某相电流过大,说明该相有短路处。 ⑷电桥检查。测量绕组直流电阻,一般相差不应超过5%以上,若超过,则电阻小的一相有短路故障。 ⑸短路侦察器法。被测绕组有短路,则钢片就会产生振动。 ⑹万用表或兆欧表法。测任意两相绕组相间的绝缘电阻,若读数极小或为零,说明该二相绕组相间有短路。 ⑺电压降法。把三绕组串联后通入低压安全交流电,测得读数小的一组有短路故障。 ⑻电流法。电机空载运行,先测量三相电流,再调换两相测量并对比,若不随电源调换而改变,较大电流的一相绕组有短路。 处理方法: (1)绕组受潮引起接地的应先进行烘干,当冷却到60——70℃左右时,浇上绝缘漆后再烘干。 (2)绕组端部绝缘损坏时,在接地处重新进行绝缘处理,涂漆,再烘干。 (3)绕组接地点在槽内时,应重绕绕组或更换部分绕组元件。 最后应用不同的兆欧表进行测量,满足技术要求即可。 电机绕组短路时由于离子的磁场分布不均,三相电流不平衡而使电机运行时振动和噪声加剧,严重时电机不能启动,而在短路线圈中产生很大的短路电流,导致线圈迅速发热而烧毁。 电动机振动大的原因 电动机振动原因主要有三种情况:电磁方面原因;机械方面原因;机电混合方面原因。 一般来讲,引起电动机振动的原因不外乎机械和电磁两方面的原因。引起直流电动机振动的主要原因是机械上、电气上和安装上的原因。电机振动极限值在国家标准GB100068.2一88《旋转电机振动测定方法及极限振动极限》中都有规定。振动是所有电机在制造、安装、运行维护与检修中经常遇到和必须解决的问题。振动过大会导致电机的运行稳定性破坏、换向条件恶化、零部件损坏、电机寿命缩短,甚至造成停机故障。 在解决电机振动问题时,首先要判别电机的振动由哪方面原因引起的,即机械、电气和安装上三者之间的原因判定。 1、区分振动是电动机还是负载机械引起的。方法是断开电动机与负载机械的连接,若振动变化较大,则与负载机械或安装有关;若振动变化很小,则是电动机本身产生的。 2、区分振动是电气原因还是机械原因产生的。方法是将电机运转至最高转速,突然切断电源,若振动随之突然减小,振动则是电气原因引起的;若振动变化不大,则主要是机械原因引起的。 3、除此之外,也有电机安装方面的原因。由于电机与负载机械之间的连接安装不良,也必然造成电机运行时的干扰力,使机组产生与转速相同角频率的振动。采用联轴器、联轴节连接时,应保证同轴度要求;采用三角带传动连接时,应保证带槽的平行要求,减少皮带的振动;采用齿轮传动连接时,应保证两轴之间的平行度要求,使齿轮能正确啮合。 电动机振动较平时大时,应采用振动表沿水平和垂直方向测量各部分振动值,并做相应记录。倾听电动机定子腔内部声音和轴承转动声音,检查地脚,如无明显异常现象,则采用脱开所拖动机械,单独空转电动机,以判定是电动机本身振动还是拖动机械引起的振动。在生产中会发现电动机修理后因种种原因致三相绕组磁势不对称,电动机在空载或低负荷时,表现出来的振动并不十分明显,而一旦接带的负荷加重,电动机振动也就逐渐加剧。 在生产中我们经常采用断电法来检查区分是由于电磁还是机械原因引起的振动。断电法即对运行在额定转速下的电动机采取忽然断电,若振动忽然减小,则可判定是由电磁原因引起的,若振动值变化不是很大,则可能是机械方面的原因引起的。 针对机械方面造成的振动,若是由于轴承磨损,则应立即更换同型号轴承;若是由于转轴变形弯曲,则必须进行校轴或更换转轴;若因地角紧固不牢,则重新紧牢即可。基础强度不够,台板高低不平看似小问题,但往往是导致振动的最直接原因。我厂一台高压电动机振动较大,多次进行中心找正,但未能消除振动,吊开电动机后,发现基础台板由两块钢板拼接而成,一侧钢板稍高,另一侧较低,拼接焊缝又未打磨平,且恰好处在电动机一侧脚板下,电动机虽经找正,但实际上有许多地方形成了点接触面,电动机中心与机械中心已找正只不过是一假象,电动机一运行必将不可避免产生振动。采取用气焊割开拼接处,重新焊接并打磨平整,电动机再次重新找正后,试转振动反而加大,经分析并查找原因后,才发现钢板经气割,又经电焊,造成一定的热损伤,强度已严重下降,电动机转动后与钢板形成共振,所以振动反而加大,重新做基础台面后,才得以消除。另外转子动平衡不良也是造成振动的根本原因,电动机在出厂时,转子已经过动平衡校验合格的,但在修理电动机过程中(非凡是对高压电动机的修理中),往往不注重做好记号刻度这一环节,擅自拆除经动平衡校验整体中的某一部件,重新装上后,必将造成动平衡不良,致使电动机振动,消除方法只有重新校验动平衡。 针对电磁方面造成的振动,应从电源入手开始检查。检查三相电压是否平衡,用钳形电流表测量三相电流是否平衡,有没有存在单相运行,生产中发现电动机接线盒内端头接线因紧固不牢,经常烧断,造成单相运行,应加强此处检查并进行消除。若在用钳形电流表测量时,发现三相电流不平衡,且表针摆动时高时低,说明转子有笼条断裂现象。此时应立即停止电动机运行,切断电源,抽出转子进行检查,修复。另外,还应测量三相定子绕组的电阻值,检查绕组是否对称,若电阻值不平衡,则说明有开焊部位,也应抽出转子后进行检查,重新焊接。 电机的结构同时包含电气和机械两部分,也可以说是电气和机械的结合点。所以说,它的故障要一分为二的分析。对电机的振动故障原因也要分成两部分。 转子在物理结构上不是完全的的中心对称、轴对称。在转动时转动惯量的不平衡导致振动。振动情况根据转速而变化。比如低速情况下振动很小,高速时振动大的情况;反过来也有低转速下振动大,高转速时振动变小的情况。 另外,转轴轴承同心度同轴度差也会引起振动,从设计上改用空气轴承可以改善。 调整转子的转动惯量或轴承同心度度同轴度是很专业的工作,除了是原产厂家很难操作。 现实中一般的解决办法就是在固定电动机的时候配置减振弹簧、减振橡胶等。 一、电磁方面的原因 1. 电源方面:三相电压不平衡,三相电动机缺相运行。 2.定子方面:定子铁心变椭圆、偏心、松动;定子绕组发生断线、接地击穿、匝间短路、接线错误,定子三相电流不平衡。 3.转子故障:转子铁心变椭圆、偏心、松动。转子笼条与端环开焊,转子笼条断裂,绕线错误,电刷接触不良等。 电气部分的故障是由电磁方面的原因造成的,电气部分故障主要有以下几点: 电磁方面主要存在三相电压不平衡,电动机单相运行。三相电流不平衡,各相电阻电抗不平衡,电动机不对称运行。电动机重绕后绕组接线错误,转子鼠笼断条,短路环开裂等。主要包括:交流电机定子接线错误、绕线型异步电动机转子绕组短路,同步电机励绕组匝间短路,同步电机励磁线圈联接错误,笼型异步电动机转子断条,转子铁心变形造成定、转子气隙不均,导致气隙磁通不平衡从而造成振动。 导致电机振动的原因多种多样,以上仅是笔者在工作中,实际遇到的一些故障总结如上。下面对这些直流电动机振动的原因作简单介绍: 1、电磁力。这种电磁力主要是由极靴下磁通的纵振荡产生的,通常具有齿频率,尤其是定子也是开口槽时,磁通脉振增加,更易造成交变磁拉力。由于直流电动机固定在机座上的主极是集中质量,在交变磁拉力和主极集中力的作用下,使机座产生挠曲和横向振动。 设计上采用非均匀气隙、电枢斜槽以及磁性定子开口槽楔,都是减少磁通振荡和振动电磁力的有效措施。 2、气隙不均匀。由于装配气隙不均匀,电机运行时产生单边磁拉力,其作用相当于电机转轴挠度增加。因此保证气隙装配均匀是防止振动的必要措施。 3、转子线圈损坏。由于转子线圈损坏使电机运行时转子径向受力不均匀,其结果与转子不平衡类似。转子线圈损坏可用电工仪表测出。 二、机械原因 1.电机本身方面:转子不平衡,转轴弯曲,滑环变形,定、转子气隙不均,定、转子磁力中心不一致,轴承故障,基础安装不良,机械机构强度不够、共振,地脚螺丝松动,电机风扇损坏。 2.与联轴器配合方面:联轴器损坏,联轴器连接不良,联轴器找中心不准,负载机械不平衡,系统共振等。 机械部分故障主要有以下几点: 机械方面主要存在地脚紧固不牢,基础台面倾斜,不平;轴承损坏,转轴弯曲变形,电动机轴线中心与其所拖动机械轴线中心不一致;定、转子铁芯磁中心不一致,转子动平衡不良等。转动部分不平衡主要是转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。 处理方法是先找好转子平衡。如果有大型传动轮、制动轮、耦合器、联轴器,应与转子分开单独找好平衡。再有就是转动部分机械松动造成的。如:铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 1、联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。还有一种情况,就是有的联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。机座、端盖重要支承件制造误差或运行变形。由于机座、端盖等转子重要支承件的配合面形位误差超差,特别是大、中型电机运行较长时间后机座、端盖等重要支承件变形,使电机在运行时轴承产生干扰力,造成电机振动。这些配件的误差或变形可采用回转打百分表等方式测得,发现有这一情况后,应对配件进行焊修等工艺方式处理,或更换配件。 2、与电机相联的齿轮、联轴器有毛病。这种故障主要表现为齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 3、电机本身结构的缺陷和安装的问题。这种故障主要表现为轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。而轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。电枢不平衡。由于旋转时不平衡质量产生的离心力的作用,使轴承上作用有一个旋转力,造成了电机和基础的振动。当气隙不匀、主极固定不紧或机座、端盖的刚度较差时,都会造成振动加剧,因此检查发现转子不平衡时,必须重新进行动平衡。 4、电机拖动的负载传导振动。例如:汽轮发电机的汽轮机振动,电机拖动的风机、水泵振动,引起电机振动。 三、电机混合原因 1.电机振动往往是气隙不匀,引起单边电磁拉力,而单边电磁拉力又使气隙进一步增大,这种机电混合作用表现为电机振动。 2.电机轴向串动,由于转子本身重力或安装水平以及磁力中心不对,引起的电磁拉力,造成电机轴向串动,引起电机振动加大,严重情况下发生轴磨瓦根,使轴瓦温度迅速升高。 处理方法: 1. 电气原因的检修:首先是测定定子三相直流电阻是否平衡,如不平衡,则说明定子连线焊接部位有开焊现象,断开绕组分相进行查找,另外绕组是否存在匝间短路现象,如故障明显可以从绝缘表面看到烧焦痕迹,或用仪器测量定子绕组,确认匝间短路后,将电机绕组重新下线。例如:水泵电机,运行中电机不仅振动大轴承温度也偏高小修试验发现电机直流电阻不合格,电机定子绕组有开焊现象,用排除法将故障找到消除后,电机运行一切正常。 2. 机械原因的检修:检查气隙是否均匀,如果测量值超标,重新调整气隙。检查轴承,测量轴承间隙,如不合格更换新轴承,检查铁心变形和松动情况,松动的铁心可用环氧树脂胶粘接灌实,检查转轴,对弯曲的转轴进行补焊重新加工或直接直轴,然后对转子做平衡试验。打风机电机大修后试运行期间,电机不仅振动大,而且轴瓦温度超标,连续处理几天后,故障仍未解决。我班组人员在帮助处理时发现,电机气隙非常大,瓦座水平也不合格,故障原因找到后,重新调整各部间隙后,电机试转一次成功。 3. 负载机械部分检查正常,电机本身也没有问题,引起故障的原因是连接部分造成的,这时要检查电机的基础水平面,倾斜度、强度,中心找正是否正确,联轴器是否损坏,电机轴伸绕度是否符合要求等。 (责任编辑:admin) |